
NASA Contractor Report 189568

i'

" __/// li

MODES OF INTERCONNECTED LATTICE TRUSSES

USING CONTINUUM MODELS, PART I

L!"Yr_,_C:, :n in.,,_rin j ,_.)

C; . / L <:':

A. V. Balakrishnan

DYNACS ENGINEERING CORPORATION

Palm Harbor, Florida

Contract NAS1-19158

December 1991

fW A
National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665-5225





MODES OF INTERCONNECTED LATTICE TRUSSES

USING CONTINUUM MODELS, PART I

A. V. Balakrishnan

Abstract

This paper is Part I of a two part report and represents a continuing systematic

attempt to explore the use of continuum models -- in contrast to the Finite Element

Models currently universally in use -- to develop feedback control laws for stability

enhancement of structures, particularly large structures, for deployment in space. We shall

show that for the control objective, continuum models do offer unique advantages.

It must be admitted of course that developing continuum models for arbitrary struc-

tures is no easy task. In this paper we take advantage of the special nature of current

Large Space Structures -- typified by the NASA-LaRC Evolutionary Model which will

be our main concern -- which consists of interconnected orthogonal lattice trusses each

with identical bays. Using an equivalent one-dimensional Timoshenko beam model, we

develop an almost complete continuum model for the Evolutionary structure. We do this

in stages, beginning only with the main bus as flexible and then going on to make all the

appendages also flexible -- except only for the antenna structure.

Based on these models we proceed to develop formulas for mode frequencies and

shapes. These are shown to be the roots of the determinant of a matrix of small

dimension compared with mode calculations using Finite Element Models, even though

the matrix involves transcendental functions. The formulas allow us to study asymptotic

properties of the modes and how they evolve as we increase the number of bodies which

are treated as flexible -- as we shall see the asymptotics in fact become simpler.
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Summary

Continuum models are constructed for interconnected beam-like lattice trusses

typified by the NASA-I.aRC Phase Zero Evolutionary Model. For the main bus as well

as the appendages we use equivalent one-dimensional Timoshenko beam models leaving

only the antenna structure as lumped. The dynamic equation is cast as an abstract wave

equation in a Hilbert space with a mass-inertia operator, a stiffness operator and a control

operator. One novel feature is the introduction of "linkage conditions" to take care of

interconnection of trusses. Formulas are developed for modes and mode shapes -- they

take the form of roots of determinants of matrices, albeit involving transcendental

functions. One immediate use of the formulas involves the study of asymptotic modes.
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1. Introduction

This paper is Part 1 of a two part report and represents a continuing systematic

attempt 11-5] to explore the use of continuum models -- in contrast to the Finite Element

Models currently universally in use -- to develop feedback control laws for stability

enhancement of structures, particularly large structures, for deployment in space. We shall

show that for the control objective, continuum models do offer unique advantages.

It must be admitted of course that developing continuum models for arbitrary struc-

tures is no easy task. Attempts are beginning in this direction, nevertheless -- see [6]. In

this paper we take advantage of the special nature of current Large Space Structures --

typilied by the NASA-LaRC Evolutionary Model 19] which will be our main concern

which consists of interconnected orthogonal lattice trusses each with identical bays. For

beam-like lattice trusses, an equivalent one-dimensional Timoshenko beam model has been

developed in 17]. Using this approximation, we develop an almost complete continuum

model for the Evolutionary structure. We do this in stages, beginning only with the main

bus as flexible and then going on to make all the appendages also flexible -- except only

for the antenna structure.

Based on these models we proceed to develop formulas for mode frequencies and

shapes. These are shown to be the roots of the determinant of a matrix of small

dimension compared with mode calculations using Finite Element Models, even though

the matrix involves transcendental functions. The formulas allow us to study asymptotic

properties of the modes and how they evolve as we increase the number of bodies which

are treated as flexible -- as we shall see the asymptotics in fact become simpler.

Our treatment is substantially different from extant approaches to modal analysis,

e.g., 181.

We begin in Section 2 with a brief description of the NASA-LaRC Zero Phase

Evolutionary Model. in Section 3 we describe the one-dimensional equivalent Timoshenko

beam model of a lattice truss, following Noor et al. 171. In Section 4 we develop continuum
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modelsof the Evolutionary Model in three stages: First we model only the bus as

flexible; in the ,second case we model the bus as well as the laser tower as flexible; and

linally the bus and the tower as well as the appendages are modelled as flexible with only

the antenna as rigid, in Section 5 we develop formulas for the mode frequencies and

shapes for all the three cases. A study of the asymptotic modes and mode shapes

is presented in Section 6 drawing on the formulas in Section 5. The closing section,

Section 7, contains some conclusions based on the study.

in Part 11 of this paper we shall present results of numerical computations of modes

and mode shapes based on the formulas herein; and compare them with extant calculations

based on Finite Element Models.
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2. The NASA-Langley "Evolutionary Model" Structure

A schematic of the Evolutionary Model, consisting of a long truss bus and several

appendages with varying degrees of flexibility, is shown in Figure 1. The main truss bus

structure has 62 bays, each being a 10-inch cubical bay. The vertical appendage (Laser

Tower) is a truss with 11 bays. There are four horizontal bay appendages each with 10

bays (to which suspension cables are attached). There are 4 bays on the reflector tower.

The reflector has eight 0.25-inch thick (aluminum) ribs which taper in width from

2 inches to 1 inch over their 96-inch length. For more details see [9]. The relative

positions of the appendges are schematized in Figure 2: s2, s5 locate the horizontal

appendages, s r denotes the tower truss; the antenna is at L; 0, sT, s4 are co-located
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Figure 1
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3. An Equivalent I-D Timoshenko Beam Model of a Lattice Truss

Here we follow Noor et al. [7] in their technique for constructing an equivalent one-

dimensional continuum model of a Lattice Truss as an anisotropic Timoshenko beam.

The element properties of a generic truss are shown in Figure 3.

Let the truss axis be the x-axis and let the z-axis be the vertical, and the x-y plane be

the horizontal, plane. Let u, v, w denote the displacement along the axes at the bay vertices.

Let s parametrize the position along the bus axis, 0 < s < Ng, where N is the number of

bays. Let u(s), v(s), w(s) denote the displacement at s for the equivalent Timosbenko

beam, and let Ol(s), _2(s), ¢3(s) be rotation angles about the x, y and z axes respectively,

0 < s _<Ng. Then the Timoshenko variables are related to the node displacements by:

u(kt)

v(kt)

w(k_)

kg,-b -b -b b b+uC_,-_,_l (_,_,_l+u _,_1-_,_) +u I_,,_ _
4

b bb
-b -b -b b Ik g' 2 , 2

4

w(_,-_,-_1 I_,-_,_)+ (_,_, _ +
4

_ (kt) =

b
- w[k£,-_,.:_) - w[k£, -b.__,b)_ -b +b b bv(k_,--_,---_)- v(kf., _-,_) ]

1 [u(kg,-b (k£,b -b¢2(kg ) _ __,b) b b -b -b- _(_,-_,-_)-u



-7-

TABLE: Element Properties

Length L

Sectional

Area A

Elastic

Modulus E

Mass Density p

Element

Mass - pAL

Element
Stiffness = EA/L

Battens

b

m b

E b

fJb

m b

S b

Longitudinal
Bars

AI_

E_

S_

Diagonal
Bars

d

Aa

E d

_)d

m d

S d

Cross Bracing
in Battens

8

A 8

E 8

I)8

m 8

S 8

Figure 3
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The anisotropic Timoshenko equations between nodes (discontinuities) are, introducing

f($, t) -=

u(s, 0

v(s, 0

w(s, t)

¢,($, 0

02(s, t)

¢3(s, 0

now the time variable t, so that

Mo_t----_- Az_s---'_+ A1_s + Aof(t,s) ._ O,

where si represent nodes, with the convention:

MO tim

sj - 0 : sensor/actuator

si< s < si+l (3.I)

s2 : appendage

s3 = sT tower/sensor/actuator

$4 -" sensor/actuator

s5 : appendage

s6 = L : antenna/sensor/actuator

0 C3

A I = ,
--C2 0

Ao = Diag.[0, 0, 0, 0, c55, c44 ]

mlt 0 0 0 0 0

0 m22 0 0 0 0

0 0 m33 0 0 0

0 0 0 m44 0 0

0 0 0 0 ross ms6

0 0 0 0 m56 m66



-9-

where

C I ,=

Cil Ci4 Cl5

Cl4 C44 C45

Cl5 C45 C55

C_ s

0 --c15 C14

0 --C45 C44

0 --c55 c45

C 3 =

£66 C36 C26

C36 C33 C23

C26 C23 C22

The mass coefficients mij in the Timoshenko equation are given in terms of the bay

parameters by:

4m b + 4m t + 4m d + m s
mll = m22 ,= m33 = ,f.

_(Sm b + 12ml + 8m d + ms)

m44 = 2m55 = 2rn66 = 61.t2

The stiffness (flexibility) cij are given by:

4tSbSaP. 2

c_i = 4£St + Sa + Sb(£ + p.2)

C44 ==
cl4 cz5 2£SbSa

g = c55 = I.t S,_ + Sb(_ + lt2)

3St _3Sb Sa

c22 = c33 = IX2 + 4(S a +Sb(g + IX2))

- £3SBSa

c23 = 4(Sd + Sb(_, + 112))

g3SbS d

c66 = 2c26 = -2c36 = _t2(Sd + Sb(£ + i.I.2))
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where

Evolutionary Model Parameters

For the evolutionary model, the coefficients specialize to:

roll ffi m22 = m33 ffi 1.076 x 10 -3 sluglet/inch

m44 ffi 48.31 × 10-3 sluglet-inch

m55 = m66 ffi 24.15 x 10-3 sluglet-inch

cll -- 62.45X 105 lb

c22 = c33 ffi 7.06x 105 lb

c44 = 353.14x 105 ib-inch 2

cs5 = c66 ffi 1540.46 × lO5 Ib-inch 2 .
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4. Continuum Models of the Evolutionary Structure

We develop now (flexible) continuum models of the evolutionary structures at levels

of increasing complexity:

i) Bus only as flexible

ii) Bus and tower as flexible

iii) All (bus, tower and appendages) as flexible, only reflector lumped.

In all cases we shall obtain the generic model dynamics as an abstract wave equation

in a Hilbe_ space:

M_(t) + Ax(t) + Bu(t) = 0

where

x(.) e Hilbert Space )t.

M is the mass-inertia operator: M is a self-adjoint and positive definite

linear bounded operator on _t onto _t with bounded inverse

A is the stiffness operator: closed-linear operator with domain dense in _t:

self-adjoint and nonnegative definite with compact resolvent

B is the control operator: B maps finite-dimensional Euclidean space into _t

u(.) denotes the control (input).

See Ill for the first development of such a model. Among the advantages of this generic

formulation is the close similarity of FEM and truncated modal models -- excepting only

for dimension not necessarily finite! We begin with the first case:

Case I: Bus Only as Flexible

In this model the tower, the appendages and the reflector are modelled as offset

lumped masses, as are the controllers, and the bus represented by the equivalent 1-D

anisotropic Timoshenko model. Let s i denote the location of the lumped masses. It is
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convenientat this point to invoke the abstract or function space representation as in

[1]. Our function space denoted )f is taken as:

- /.,2[0 , L] 6

with elements denoted x:

X lie

X R 6x6

f(s)

u(s)

v(s)

w(s)

#I(s)

¢2(s)

#3(s)

0<s<L

.t'(o)

f(s2)

f(sr)
b -

f($4)

f(ss)

f(L)

and the norm in _f is given by:

L

Ilxll2 ,. f IIf(s)ll 2 ds +
0

We now define the operator A"

where

Ilbll2 . (4.1)

(4.2)

g(s) ., -A2 f"(s) + Al f'(s)+ Ao f(s), si< s < si+l , i= I,...,5.
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c = Abf =

-L! f(0) - A2 f'(0)

A2(f'(s2-) - f'(s2+))

A2(f(s i-) - f'(s i +))

1

Llf(L) + A2f'(L)

(4.3)

where

LI

The domain of A consists of functions which are continuous and piecewise smooth: in

fact are in _t2(si, si+l), i = 1..... 5, and the first derivative is possibly discontinuous

at s = s i. A is then a closed linear operator with domain dense in _f and is self-adjoint

and nonnegative definite. Moreover for x in _(A)

L

I
0

(4.4)

L[ I,"'(s)Cl[v (s)- %(s)
I

o Iw'(s) +¢2(s)

u'(s)

, v'(s)- %(s)

w'(s) + ¢2(s)

ds +

o 1¢3 (s) I

ds (4.5)

where

n __

C1 0

0 C3

0 0

-c_' 0

0

0

Ao

and the potential energy of the beam

lax, xl
= 2

It is of course assumed that CI and C3 are positive definite and nonsingular, and hence

A is nonnegative definite.
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We have thus obtained our "stiffness" operator. Next we need to define the mass/

moment operator M.

 l't Eb M b b

We proceed now to define M b. M b is "diagonal":

M b_bt

Mbb " i

Mb 6b6

where

bl

b ffi i ,

b6

and

b i e R 6

Mbi are nonsingular, symmetric and positive definite.

Finally we define the control operator B. Figure 4 is a schematic of the Evolutionary

where

Bu = x; x ----

U z

B,U

Ul

u2

u8

bl

b2

b6

oI
BvU

ffi b

(4.6)

(4.7)

Then

structure showing the disposition of the force actuators and the corresponding axes along

which they act. There are 8 actuators. Hence let U denote the 8×1 column vector:
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Figure 4

Schematic of Evolutionary Structure

Showing Disposition of Actuators/Sensors
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b I ,,=

Rox

0

Ul

u2

0

Ul

U2

R T ×

U3

U4

0

U3

U4

0

b4 m

R o x

0

US

U6

0

U5

U6

bs=O /6,-

U7

U8

0

I U7
R L x ug

0

where, with r denoting the position vector, r(s) denoting position vector along bus axis:

Ro = r(controiler) - r(0)

R r = r(controller on tower) - r(sr)

Rt = r(controllerat s = s4) - r($4)

RL = r(controllerats=L) - r(L).

We notethatthenumericalvaluesare:

Ro = 0

I°R T = 0

100

RI .. O

I°R L = 0

40
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Hence

B*x - BTlb

v(0)

,4,(O)

U(Sy) + 100_2(ST)

V(Sr) - 100¢1 (st)

v(s4)

_s4)

u(L) +40¢2(L)

v(L) -_¢_(L)

Case 2: Bus and Tower as Flexible

For this case and the next it is convenient to change notation slightly. We use

f(x, y, z) in place of f(s), so that

f(s) = f(s, O, O)

denotes the displacement vector along the axis of the bus and

IT(s) = f(s r, O, s), 0 < s < L,r

will denote the displacement vector along the axis of the tower truss in the equivalent

I-D Timoshenko model, with LT denoting the length of the tower. Since the tower truss

axis is now the z-axis, we redefine the tower truss coefficient matrices using a subscript:

CI ,r 0 [

A2,r =' 0 C3,r I

A1 ,T = O, C2, r [
--C2,r 0

Ao, r = Diag.[0, 0, 0, c44, c55, 0]
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Mo,r - 0 0

0 0

0 0

0 0

o -G.T ILI .r = 0 0

0 0 0

0 0 0

mll 0 0 0

0 nts6 ms6 0

0 ms6 mss 0

0 0 0 m44

C55 C45 C15

C45 C44 Ct4

Cl5 6"14 Cll

C4s -css 0

c44 -c4s 0

cl4 -cls 0

C22 C23 C26

C23 ¢33 C36

C26 c36 C66

In the abstract version, the Hilbert Space _f now is given by

_f -, lal0, L16 x L210, Lr] 6 x R 6×6

f(s,O,O), O<s<L

x = f(sr,O,s), O<s<L. r

b

where

b

/(o,o,o)

f(s2,o,o)

f(sr,o,t_.r)

f(s4,O,O)

f(ss,O,O)

f(L,o,o)
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llxll2
0 0

The domain of A consists of functions

f(s,0,0),f($r,O,s),

where

- y If(s,O,O)l2d$ + If(sT,O,.s)l2ds + llbll2.

0<s<L

O<s<L T

f(s,0,0) and f'(s,O, O)

are absolutelycontinuousand f'(s,O, O) has an /a-derivativeinthe sub-intervals

0 < $ < $2 , '$'2 <$ <.$`4 P .$`4 < $ < $5 , $5 < $ < L ;

and

f(sr,0,s) and f'(sT, 0,s)

f'(sT, O, s) having anare absolutely continuous with /a-derivative in 0 < S < L T .

Moreover the following "linkage conditions" are satisfied:

i) f(s,O,o)l,.sr = f(sr,O,s)[,.O

ii)L].rf(sr,O,O) - A2,rf2(sr,0,0) + A2(fx(sr-,0,0)-fx(sr+,O,O)= O.

The stiffnessoperatorA isnow definedby

f(.,o,o)

x = f(s r,O,')

b

g(., O, O)

Ax = g(s r, O, .)

ad

where

g(s, 0, 0) = -,42 fxx(.$,, 0, O) + At fz(s, O, O) + Ao f(s, O, O)

0 < .$` < $2, .$`2 <.$` <.$`4, $4 <.$` < .$`5, S5< S < $ 6 ,

g(s T, O, s) .. -A 2.T fzz(sr, 0, s) + A l ,r/,(sT, O, s) + A0, z f(s r, O, s)

0<s<Lr ,
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Abf -

-L,f(0,0,

A2(f_(s_-,

LI,Tf(ST,O,

o)- /12f_(o,o,o)

o,o)-f_(s2+,o ,o))

ur)+ /I2,rA(sr,0,_)

0, 0) --fx($4+, 0, 0))

A,(/_(ss-,o,o)-f_fss+,o ,o))

Llf(L,O,O) + A2f,(L,O,O)

Thus defined, it is easy to verify that A is closed, self-adjoint and nonnegative definite

and that

[Ax,x]
2 = ElasticEnergy of Bus + ElasticEnergy ofTower Truss.

Finallythemass/moment operatorM isdefinedby

Mx ,_

Mof(', O,o)

lifo,T f(ST, O, ")

Mbb

where

and Mb i

Finally we define B

Mbb = [ Mbibi l

are positive-definite and nonsingular.

the control operator. First we define

BU = x; x = 0 [

B U U I

B u U =

col.[0,ul,u2,O,O,01

0

col.[us,u4,0,0,0,0]

col.[0,us,u6,0,0,O]

0

col. JuT, us, O, R LX

L

=b

UTllU8

0
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B*U .. B*b ...

v(0, 0, 0)

w(0, 0, 0)

u(sr,O,t.r)

v(sr,O,t.r)

V($4, O, O)

w(s4,o,o)

u(L, O, O) + 40#:2 (L,O, O)

v(L,0,0) - 40q_1(L,0,0)

Case 3: Bus, Tower and Appendages Flexible

We now generalize to the case where the main bus, the laser tower and the hori-

zontal appendages are modelled as flexible lattice trusses -- or more precisely, their 1-D

Timoshenko beam equivalents. We shall be briefer in our descriptions since we will

follow the pattern already set in Case 2.

Thus let the subscript s2 denote the coefficient matrices for the appendages at s _. s2

and similarly the subscript ss for the appendage at s = s5. Then

Cl .s2 0 I
A2'S2 = 0 C3,52

I 0 C2 ,s 2hi ,S2 " ,
-C2,s2 0

AO,s2 *. Diag.[0, 0, 0, cs5, 0, c44 ]

Mo,s, =

0 -C2's2 IL1 's2 " 0 0

m22 0 0 0 0 0

0 roll 0 0 0 0

0 0 m33 0 0 0

0 0 0 m55 0 ms6

0 0 0 0 m44 0

0 0 0 m56 0 n_6
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C2.$2 "_

ca4 cl4 ¢a5

¢14 Cll c15

ca5 Cl5 c55

-c45 0 c44

-cl5 0 c14

-c55 0 c45

C33 c36 C23

C36 C66 c26

C23 C26 C22

A2,ss - A2,52

AI.Ss ** AI,S2

AOoS_ - Ao.s2

M0,$s = Mo,s2

Ll,ss - LI.s2 .

The appendage displacement vectors are then

f(s2, s, 0),

f(ss, s, O) ,

for the evolutionary trum £_ = £2. Thus let

f(s2,s,O), -l_l<s< l_I

f(ST,S,O), O<S<L r
f=

f(ss,s,O),-_2 <s< £ 2

f(s,O,O), 0<s<L
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f(o, o, o)

f(s2,-_1, o)

f(s2, +tl, o)

f(s r, O, 1.q.)

f($4,O, O)

f(ss,-t_,O)

f(ss, +£2, O)

f(L, O, O)

Abf -

-Llf(O, O, O) - A2fx(O, O, O)

-ILl,s,f(s2, -£1, O) - A2,s,fy(S 2, -£1, O)

LI,s2f(s2,+£I,0) + A2.sJy(S2,+£1,0)

L l ,r/(Sr, 0,/_) + A2.rfz(s r, 0,/._)

A2(fx(S4-,0,0) - fx(S4+,0,0))

-LI.s,f(ss,-£2, O) - A2.ssfy(SS,-£2 ,0)

LI ,s,f(ss, +£2, 0) + A2,ssfy(ss, +£2, 0)

Ljf(L, O, O) + Affx(L, O, O)

Plus Linkage Conditions:

(I) f(s,O,0)[,.,, ._ f(sr, O, s)[,.o

-L t ,rf(sT, O, O) - A 2 .Tf_(s.r, O, O) + A2(fx(sr-, O, O) - fxfsr+, O, O)) = 0

(2) f(s,o,o)[,-,I= /fs2,s,o)[,-o

A2(fx(s2-,0,0) - fxfs2+,0,0)) + a 2,sl(fy(s2, o--,o)- fyfs2, o+, o)) --o

(3) /O,o,o)l,.,,= :fss,s,o)l,.o

A2(fx(ss-,0,0) - fx(SS+, O,0)) + a2.s,(/'yCss, 0-, o) - fyfss, o+, o)) - o.
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Remark

If suspension "ends" are treated as "free-free," then remove

f(s2, -tl, O)

f(s2, +_l, O)

from b and instead take:

LI ,$,f(s2, -£l, O)

Ll,s,f(s2, +£1, O)

and similarly for the other suspension beam.

where

+ A2,s,fy(s2,-1_!,0 ) - 0

+ A2.S,_(s2, +_1. O) - 0

Finally:

- /.,2[-I[i, l_ll 6 × L2[0, LT] 6 × L2[-_ 2, 1_2]6 × /-,2[0, L] 6 × R 6×8

X s

Ax =y

I: Ib4

g($2, ", O)

g(s_, O, .)
g =

g(ss,., O)

g(.,O,O)

g(s2,s,O) = -A2,s2fyy(s2,s,O) + A 1,safy(s2,s,O) + Ao,saf(s2,s,O)

--_1 < S < _! ,

g(s T, s, O) - -A2,Tfzz(S T, $, 0) + A 1.Tfz(sT, s, O) + AO.Tf(S y, s, O)

O<s<L,

g(s_, s, O) = -A2,ssfyy(ss, s, O) + A l.s,fy(sS, s, O) + Ao,ssf(Ss, s, O)

-g2 < s < 1_2 ,
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g(s,0,0) - -A2f_,,(s,O,O) + A1f,,(s,0,0) + Ao/(S,O,O)

c ..Abf; f subjectto linkageconditions.

Then A isself-adjointand nonnegativedefiniteand

lAx, x] ,. [Sum of ElasticEnergy of Tower, Suspensionsand Main Beam]
2

Next,themass/inertiaoperatorM isdefinedby

Mo.saf(s2, ", O)

M0.r/'(Sr, 0,.)

Mx = Mo,s,f(ss, ", O)

Mof(', O, O)

Mbb

where again

Mbb ..

where Mbi are mass/inertia matrices.

Mb_ bl

Mb i b8

Finally we define the control operator B.

8U= I 0
Bv U

Bv U = col.[bl, b2, b3, b4, bs, b6,

bl = col.[0, uj, u2, O, O, O]

b2 = 0 - b3

b4 - col.[u3, u4, 0, 0, 0, 01

bs = col.[0, us, u6, 0, 0, 01

bT, bg]

b 6 = 0 ,= b7
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Hence:

B*x = B*_b ffi

U7

US

0

t U7
R L x us

0

v(O,o,o)

w(o,o,o)

u(sr,o,I..r)

V(Sr,O,Lr)

v(s4,O,O)

w(s4,O,o)

u(L,O,O)+ 4002(L,0,0)

v(L,O,O)- 40_i(L,O,O)
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file: june91y

o Mode Formulas

In this section we develop formulas for modes and mode shapes to find the modes

we need to solve the eigenvalue problem:

Ax - ¢z2Mx.

Letting

X I

we begin with Case 1.

(5.1)

Case 1: Bus Only Flexible

In this case (5.1) translates into:

x-I'l,
-A_ f"(s) + A_ f'(s) + Ao/(s) - _Mo f(s),

Ab f - _Mbb

where the second equation can be expanded as:

-Llf(O) - A2f'(O) = Mb,0f(0)

A2(f'(si-) - f'(s i+)) - Mb, i f(si) ,

L1 f(L) + A2 f'(L) = M b,Lf(L)

For combining (5.2) and (5.3a) let

_(_) -

(a 12x12 matrix). Let

$i < $ < $i¢ 1

i=2 .....5 }

(5.2)

(5.3)

(5.3a)

(5.4)
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_(=)s
. I PsI(s)

P2 ! (s)
/h2(s) IP22(s)

C5.5)

where, of COUrt,

P

P21(s) = Pl,(s)

Paz(s) = P12(s).

Let

Zl - ._(_2Mb,o- /,0

z, - o_A;_M..,. i=2 ..... 5

Then (4.9a)yields:

= ed(w)(si+ '-si) I f(si) [
f'(s,-) - Z, f(s,)

(5.6)

with the convention that

and condition (4.9a) requires that

But we can write

where

D(o)) = I A-_(LI - (02Mb,L)

f'(sl-) = if(0-) = 0

f'(L) - Z6f(L).

f'(L) - _of(L) ,ffi

16 I " e_(=)(L-ss)

D((o)f(O)

0

16

e a (=)0 s-S.)

/(w)(sl-sa)

e_(w)(:,-sO

A_I(L! - o_2Mb,o)

0

16

(5.7)
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where / 6 is the 6x6 Identity matrix. Thus the mode frequencies are determined from

]D(_)JDe t :,- 0 (5.8)

and the mode shapes from the corresponding eigenveetor f(0):

D(to)f(O) .. 0 (5.9)

the corresponding f(si) being determined from (5.6)• Or, more explicitly

f(s) = 116 0 [ e d(t°)(s-si) T i e 'j(o_)ai-I Ti_ 1

• .. ed(°J)al , s<s i (5.6a)

where

16 0
, i - 2,3,4,5, ai "si+ 1 - si •

ri - -o2A Mb.i t6

We have thus "reduced" a mode determination problem to finding the zeros of a transcen-

dental function

ID(c0)lOet "= 0.

The crucial calculation is that of the matrix exponential e "_(ta)(si+ l-si). We note that we

can "expand" D(co) as:

6

D(¢_) = Z ¢02kOk
1

since

D(O) = O.
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Pure Modes

The evolutionary model trusses are actually isometric:

cij - O, i _: j

m# -O, i;e j

Mbo - Mb, = Diag.(.05, .05, .05, 1.9, 0.95, 0.95)

M#2 m M$$ m

0.28 0

0 0.28

0 0

0 0.71

-0.71 0

0 0

0 0

0 -0.71

0 0

0 1538

0 0

0 0

0.71 0

0 0

0 0

0 0

53.9 0

0 1494

Ms 7,

0.18

0

- 0

0

-13.23

0

0 0

0.18 0

0 0.18

13.23 0

0 0

0 0

0 13.23 0

-13.23 0 0

0 0 0

1132 0 0

0 1132 0

0 0 7.3

Mb 6 s ML

0.38 0 0 0 22 0

0 0.38 0 -22 0 -0.91

0 0 0.38 0 0.91 0

0 22 0 1511 0 120

-22 0 -0.91 0 1459 0

0 0.91 0 120 0 229

Mo - Diag.( 1.08x 10 -3, 1.08× 10-3, 1.08xi0 -3, 48.3x 10 -3, 24.15x10 -3, 24.15x 10-3)

A2 -, Diag. ( 62.45 x10 s, 7.06x10 s, 7.06x105, 353.1x10 s, 1540x10 s, 1540x105).

The inertia matrices Mbi are nearly diagonal. If we retain only the diagonal terms,

we can easily see that there are "pure" modes: a pure "axial" mode in which
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f(s) - a(s) -

I 1
'1

0

Io
I°'0

and pure "torsion" mode:

f(s) - a(s) =

0

0

0

1

0

0

and we can calculate the corresponding mode frequencies (and shapes). Thus let

1

0

el -_ 0

0

0

0

Then we have

D(co)el = d(o_)el

where

d(o)) = I _.(02mb, LCll

PI i(Ai)

P21(Ai)

Pl l(As)

P21 (As)

Pi2(Ai)

P22(Ai)

P|2(AI)

P22(AI)

P12(As)

P22(AS)

1

-'(02 mb ,i

Cll

1

-(02 mb , !

Cll

1

--(D2 mb ,5

Cll

0

0
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where

A i m $i+1 - $i'

Pll(s) = cos

Pl2(s) = sin _s
7_

P21(s) = -X sin _s

i=1, .... 5

where

P22(s) = cos

and

X - m_f'mmttlcll

and the mode shape

mbi = the 1-1 entry in Mb. i

ol.
PI l(s-si) P12(s-s i)

P21 ($-$i) P22(s-si)

We list below the first few modes corresponding to

1

..0)2 mb ti

Cll

1

--(02mb,l

Cll

0

a(O), si S s S $i+ _ .

d(m) = O.
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Pure Axial Modes (Hz)

29.1

82.45

116,35

187.4

218.7

281.9 ,

370.3

610.9

Pure Torsion Modes

Here

where

f(s) = a(s)e4

0

0

e4 = 0

I

0

0

d(co) ,I

P11(Ai)

P21(Ai)

PI I(AI)

P21 (AI)

D(co)e4 - ds((o)e4

PI I(As) el2(A5)

P21(As) P22(A5)

PI2(Ai)

P22(Ai)

1

"-(02rob ,4 ,i

C44

Pi2(AI) [
P22(AI)

1

_(02 mb ,4,I

C44

1

-'(1)2mb,4,5

C44

0

1

0

1
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where

The first few modes are:

mb.4,i

Pll(S) -- COS

sin
Psz(s) - _.

P21(s) = -k sin

P22(s) " cos _.s .

Pure Torsion Modes (Hz)

1.2

4.29

6.79

30.6

41.6

67.46

94.53

! 27.4

163

186.9

2O8

232

249

292

317

Case 2: Bus and Tower Flexible

For this case (5.1) yields:

D(m)f - o
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where

f ml

D(o)) -

/, (st, o, s) I,- o I

[(0, O, O) [12×t

Dll DI2 ID2 ! D2 2

Dll = I A_'r( LI'T- (02Mb,L) I [

O12 I A'_.T(L,= ,T - o)2Mb.L ) '01 .

ea(c°)s_ [ IA_(-L2 - 032Mb,l )

e_ (.,)(sr-s,)7,2

D21 ]A-_(L,-,.,,_M,,.,..)! ] (e'c'_c_-s'_r,)

A2 A2.T

• (e_co.)_s.-s.)r,)

D22 IA_(L,-o,=M_.,),1

I I'e_(_a)(S4-Sr)

A_ L1 ,T

(e,I(=)(L-SDTs) . (ea(W)(s,-s,)T4)

/

!

( ed(t°)(sr-s2)Tl)g[_)$' A_.(LI__2Mb. I

where

IO(co)l-

,_(_) =

1o,,o22- o;_o2,o,,_, I

0 ! I

i-2,3,4,5
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az(m) -
i

A21,TAI.T

D(_)f - 0

Mode Shapes: Tower

f(s T, O, z) - II 0 I ear(°)):

0x f,(ST,O,O) I I 0 I " e't(®)&+ e'+(m)&=T2
0 0

0 <: z -</-,.r.

l  o,o,o)I)A2q(-L,- o2Mb,x)/(0, O,O)

Case 3: Bus, Tower and Appendages Flexible

For this case (5.1) reduces to:

D(o)f = 0

where

fy_(s2, O, O)

_+ (s2,o,o)

_(s T, o, o)

f,_(ss, O,o)

fy+ (ss, O, O)

f(o, o, o) 36xl

D(o) = {D O} i,j- I ..... 6
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Dij .. [-Lj.sa_CO2Ms,,__ _

D2 z .. [ Lx,s,'C_2Ms,,e j

D33 ,.. ] LI,T-fO%a,L r

D_ 4 . I-L,,s_o%,,_,,

l:)55 " I LI.s,-O_Ms,.t, ..,°,.,,,foI

!

I 0 e_(a))(a,+at)[ I ]
I -A_(LI + _2Mb.O )

/ 0

/-4

-,42 (Lz+o*m_,o)

! 0

/
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D66- ILI-{O2Mb.L
A21ed(®)(A,,A,)T,e,j(®),,,. I ! 0

-A_Lt ,T I

I

e_(m)(A:+A i)

D65 . [ LI_O)2Mb,L A2 l ed((o)As 0

-A_A2.ss

D64 " I LI-(O2Mb,L A2 Je'l(m)z% 0

A_2A2.s5

D63 " I LI-O')2Mb,L

-A 42A2.T

D62 " [ LI - O')2Mb.L
A2[ ea(m)(A'+_') 7"4 e a_®)'_ . ] i

-A _4L_ .T

I

I -A_A2.s,

D6! "= JLI - O)2Mb.L A2 1e_(t°)(as+_'4)7"4ea(_)A3 •

i

A q2A2 .s :

0
ea ( te )& a

l

JD(co)J = [Dzl "D22''' D55 (D66 -I I, " - D61DI IDI6 ..... D65D5_D56 )
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6. Asymptotic Modes

In this section we use our mode formulas of Section 5 to study the asymptotic

behavior of modes for all the three cases.

Case 1: Bus Only Flexible

For the asymptotic study we use the expansion

6

D(to) - X OgkDk.
I

For large to therefore the roots of

are those of

with increasing accuracy. Now

D6

where

Hence

if and only if

ID(co)l - o

1/961= 0

= A-21Mb.L PI2(As) A21Mb,5 PI2(A4) "'" PI2(Ai) A-2tMbA

Pn2(s)-, I! 01e'_(°')s I! I'0

ID61 " 0

IPii(Ai)I -_ O, for some i=1,2,3,4,5.

But these roots are recognized as the modes of a "clamped-clamped" beam. Thus

asymptotically all the "clamped-clamped" modes correspond to every beam segment between

nodes. In fact for large to,

6 sin Xt (to)A
pt2(A) = 5".

n Xk(to)
ek

where ek are the unit vectors, k - 1..... 6,
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 (co) -

A21Moek - 7kek .

The eigenvalues of Pi2(Ai) are given by

sin _-k ¢oAi

.

or, the modes are given by

For the evolutionary model

or

N_k (t)Ai -. nz

nTr I
_J_ _ _ o

tilt

co-V 

k-I ..... 6

For _, the largest segment, this yields for the axial mode:

v -- (165.4)n Hz

and for the torsion mode

v- (58.7)n (_)

- (77.1)n (A3).

It is difficult to recognize these in the few modes we have calculated.

i-_ 1,...,5, k- 1,...,6.

Case 2:

Now

Bus and Tower Flexible

Here [D(CO)I- 0 for large co yields

[DII(co)I _)22(co)l ffi O.

ID_t(co)l -= 0
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means the roots of

,l Olear(°_)LT ]!10 - 0

which are recognized as the "clamped-clamped" modes of the tower truss -- as we

should expect.

ID22(o)1- 0

yields

PI2(As)A21 Mb,5 PI2(A4)A2 i Mb,4

(el I(A3)-PI 2(A3)/121 L1 .T)PI 2(A2)A2 ! Mb .2 PI 2(AI)

The first relation is equivalent to:

IP_2(as)l = 0 ~

IPt2(A4)l =

The second relation yields

and

IPl2(Ai)f = 0 ~

=0

+ PI2(A3)P22(A2)A_ 1Mb,2Pl2(Al) [

=0

clamped-clamped modes of segment As

clamped-clamped modes of segment A4 .

clamped-clamped modes of segment A1

I(PI I(A3)-Pt2(A3)A21 Li .T)PI2(A2) + Pt2(A3)P22(A2)] - 0.

A-2) Ll.ret = O, k= 1,2,3,6

(corresponding to "displacement" modes about the tower axis) and the torsion mode and

hence for k ffi 1, 2, 3, 6

Since asymptotically

Now

6

P22(A) = _ cos Xk(co)Aek .
!

6

P11(A) '= E cos _.t(o)Aek
1
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(PI l(A3) - PI2(A3)A21LI .T)PI2(A2)et

sin Xt (¢0)A2
" [[ c°s _'(¢0)A3 7_.(o_))

sin _,k(C0)(A3+A2)

- _.k(¢o) et .

+ PI2(A3)P22(A2)ek

sin Xk(_)A 3 )+ _.t(¢0 ) cos _,t(c0)A2 e t

Hence we see asymptotically the clamped-clamped displacement modes of the segment

(A3 + A2). Hence we have the clamped-clamped displacement modes of segments:

A5

Al

A2 + A3

but the_ are now recognized as the segments between lumped masses. We note that for

the evolutionary truss

A2 + A3 '= 205 < A4.

Hence these modes are still too high.

Case 3: Bus, Tower and Appendges Flexible

Here

ID(o_)I= 0

asymptotically

I/)11(03)[ ID22(_)I ID33(_)l _D44((0)l _)55(_)I

IDll(c0)l - 0 '_

JID22(co)1 = 0

[D33(¢0)l = 0 ~

[D44(_)I- 0

JIDss(co)l = 0

]D66(fD)I = 0 =:_

ID6d¢o)l= 0

= clamped-clamped modes of each appendage (length £1) at s2

clamped-clamped modes of towertruss

clamped-clamped modes of each appendage at ss

bus modes
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•" (Mb,L PI2(A4÷AS)A21 Mb, 4 )

((Pll(A3)- PI2(A3)A21LI,T)PI2(A2+Al) + PI2(A3)P22(A2+Al) = 0

• IPI2(A4 + As)I = 0 clamped-clamped modes of segment (A4 + As).

As in Case 2, for e t = 1, 2, 3, the displacement modes, we have

A-21LI,Tet = 0

and hence we obtain

sin _,t(m)(A! + A2 + A3) ,- 0.

Or, we have the clamped-clamped modes of the segment (/q ÷ A2 ÷ ,%). But

A4 +As

A! + A2 + A3

are now the segments between lumped masses. Moreover for the evolutionary truss:

A4 + A5 = 295

A_ + A2 + A3 = 330.

The clamped-clamped mode frequencies corresponding to the segment A_ + A2 + A3 are

given by

n _ Hz ~ (Axial) -- (20.5)n Hzv - 660

and corresponding to the segment A4 + As:

v = llmll -_ (22.9)n Hz

which are now low enough to be found in the range of modes of practical interest!
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7. Conclusions

it is feasible to construct continuum models of flexible multibodies if they take the

form of large interconnected trusses with many bays where advantage can be taken of

I-D equivalent Timoshenko beam models. Using these models it is possible to construct

formulas for modes where the matrix size is insignificant compared to the Finite Element

version. However transcendental functions are involved. It is possible to make explicit

use of the mode formulas to estimate asymptotic modes. Asymptotic modes would appear

to be more realistic as the number of flexible parts which are modelled as continua

increases. The asymptotic modes then are recognized as the clamped-clamped modes of

beam segments between lumped masses.
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